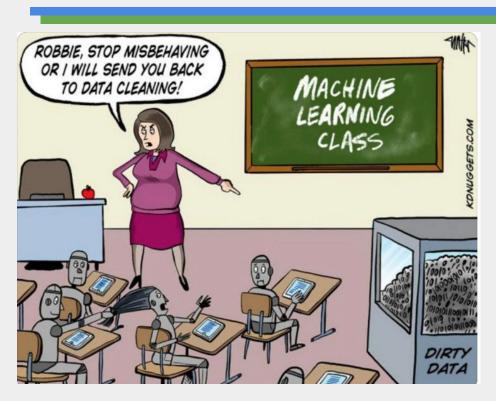
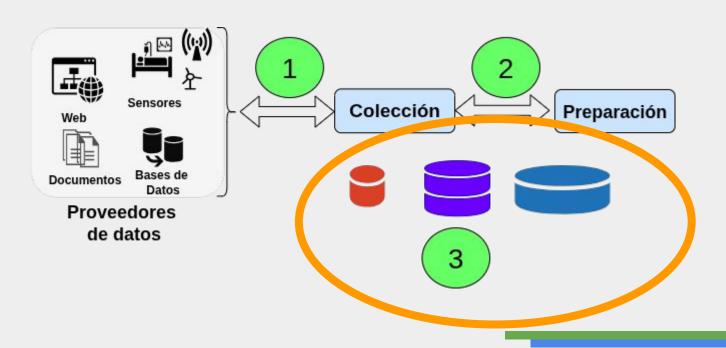


Especialización en Inteligencia de Datos Aplicada

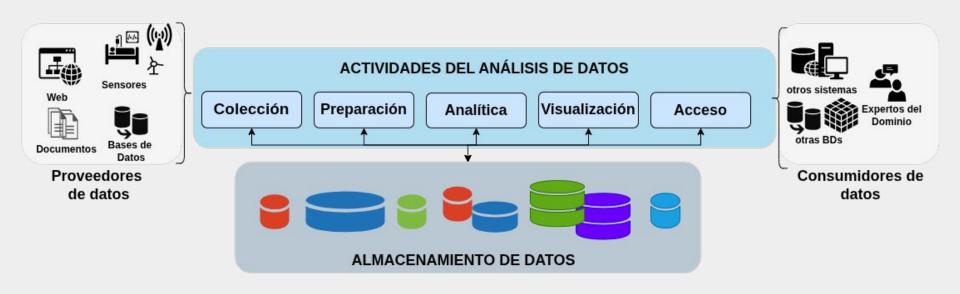


Facultad de Informática Universidad Nacional del Comahue

EXTRACCIÓN, PREPARACIÓN Y ALMACENAMIENTO DE LOS DATOS

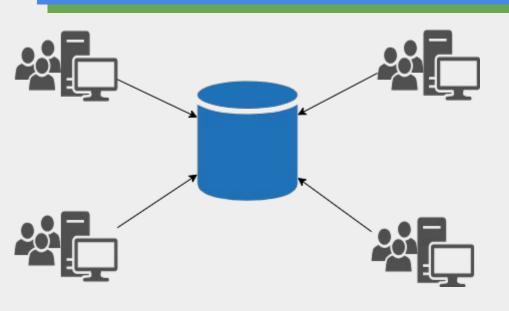

Segundo Cuatrimestre Unidad III

PROCESO DE ANÁLISIS DE DATOS Preparación de los Datos, es así?

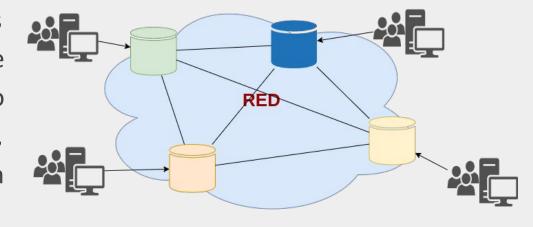


PROCESO DE ANÁLISIS DE DATOS Con qué seguimos?

PROCESO DE ANÁLISIS DE DATOS Actividades


 Lamentablemente y afortunadamente hay muuuuchos paradigmas de almacenamiento que funcionan bajo diferentes reglas y entornos.

- Pero... veremos cada uno detalladamente durante la Carrera.
- Aquí empezamos sólo con algunos

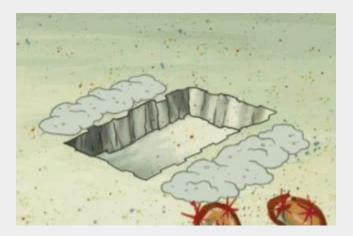

PROCESO DE ANÁLISIS DE DATOS Entornos centralizados vs distribuidos

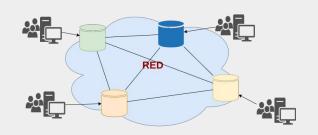
Centralizado: los datos se almacenan y mantienen en una única ubicación, al cual acceden los usuarios o aplicaciones a través de una red.

PROCESO DE ANÁLISIS DE DATOS Entornos centralizados vs distribuidos

Distribuido: es una colección de sitios (o nodos) conectados mediante alguna red de comunicación, donde cada uno representa un sistema en sí mismo, y los sitios están de acuerdo en trabajar juntos (si es necesario).

PROCESO DE ANÁLISIS DE DATOS Almacenamiento distribuido

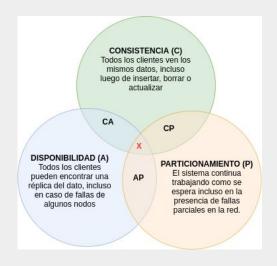

 Ventajas: Eficiencia accesibilidad, disponibilidad, rendimiento,



 Regla básica: Para un usuario un Sistema Distribuido debería verse exactamente igual que un Sistema no-distribuido

PROCESO DE ANÁLISIS DE DATOS Almacenamiento distribuido

 Características más importantes: Fragmentación, Replicación, Transparencia, Procesamiento Distribuido, Escalabilidad horizontal


...pensamos en transacciones que deben ser ACID

- Teorema CAP: se aplica a entornos distribuidos
 - Consistencia (C): Todos los nodos deben poseer la misma información. Para cumplir con esta propiedad los nodos deben estar siempre comunicados.
 - Disponibilidad (A): el sistema debe estar siempre funcionando, incluso cuando un nodo cae, otro puede ocupar su lugar para responder a una petición de lectura o escritura. El sistema siempre debe responder a un cliente ya sea con éxito o con falla.
 - Tolerancia a Particiones de Red (P): el sistema debe poder funcionar aún cuando existan particiones en la red que dividan los nodos en una o más particiones.

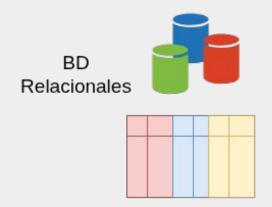
Teorema CAP

- C+P: los nodos no pueden mantenerse disponibles
 (A) mientras se quiera lograr un estado de consistencia (C), debido a las particiones (P).
- A+P: la consistencia (C) no es posible debido al particionamiento (P) y mantener la disponibilidad (A).
- La elección es entre C y A solo cuando ocurre una partición de red o falla

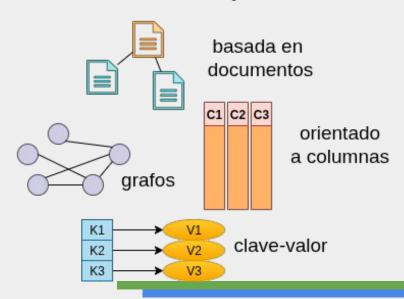
- Principio BASE basado en el Teorema CAP
 - Básicamente disponible: la BD siempre reconocerá un requerimiento de un cliente y responderá con éxito o con falla.
 - Estado suave: la BD puede caer en un estado inconsistente cuando un dato es leído, es decir que los resultados de una consulta a un dato puede cambiar cuando el mismo dato es requerido.

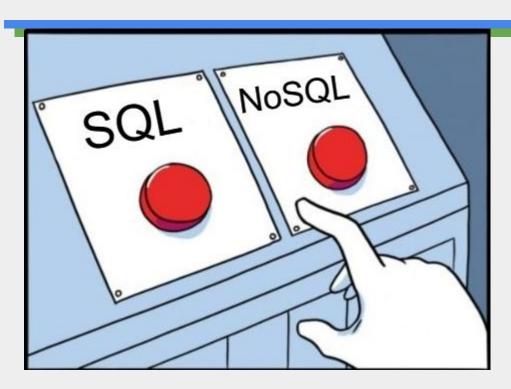
- Principio BASE basado en el Teorema CAP
 - Eventualmente consistente: el sistema puede encontrarse en un estado inconsistente en algunos momentos, pero con el paso del tiempo se volverá

Cuando un SGBD soporta BASE favorece la disponibilidad contra la consistencia, es decir cumple A+P del teorema CAP.

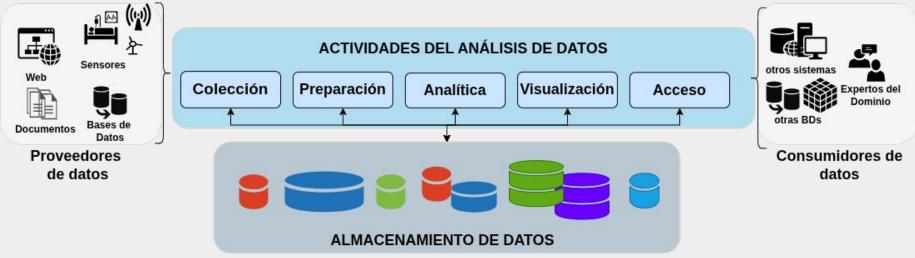

PROCESO DE ANÁLISIS DE DATOS Clasificación de Bases de Datos

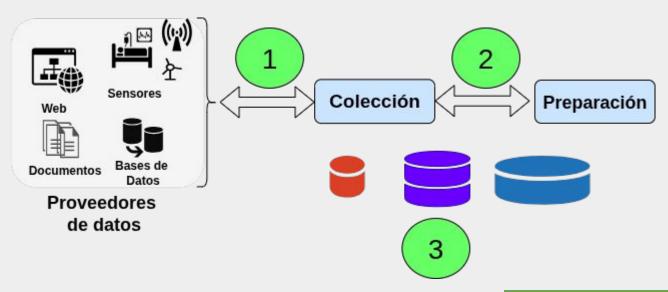
SQL	VS	NoSQL
RIGIDO	ESQUEMA	FLEXIBLE
VERTICAL	ESCALABILIDAD	HORIZONTAL
ACID	INTEGRIDAD DE DATOS	BASE/CAP
CENTRALIZADO	ENTORNO	DISTRIBUIDO
CONSISTENCIA	PRIORIDADES	DISPONIBILIDAD Y TOLERANCIA A FALLAS


PROCESO DE ANÁLISIS DE DATOS Clasificación de Bases de Datos

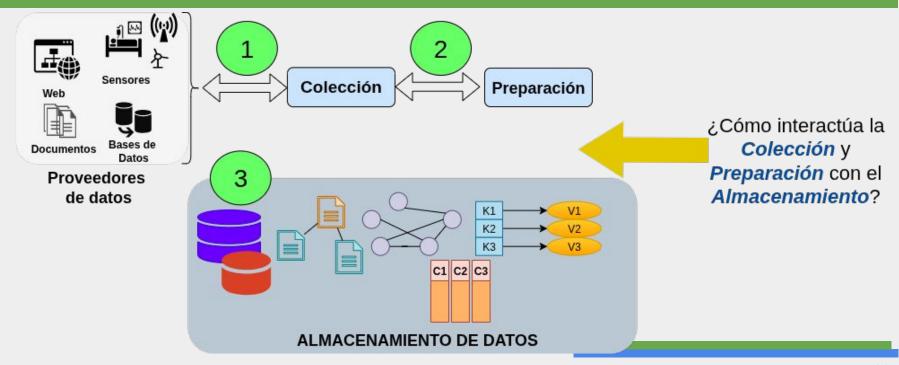

Lenguaje principal SQL

No solo SQL


PROCESO DE ANÁLISIS DE DATOS Clasificación de Bases de Datos

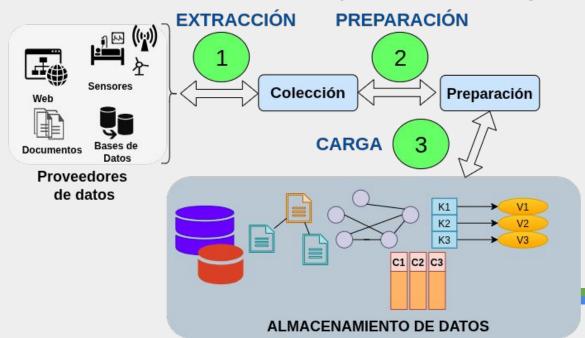

PROCESO DE ANÁLISIS DE DATOS Utilidad de BDs

Volvemos otra vez al proceso

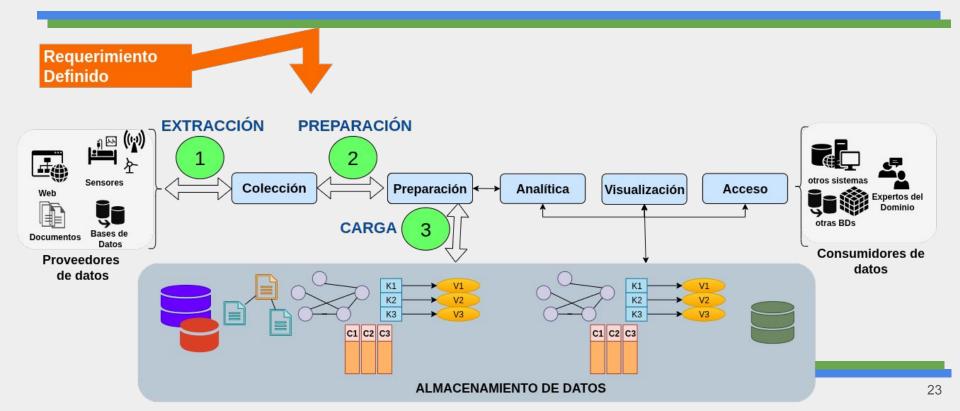


PROCESO DE ANÁLISIS DE DATOS Utilidad de BDs

Volvemos otra vez al proceso - estabamos aca

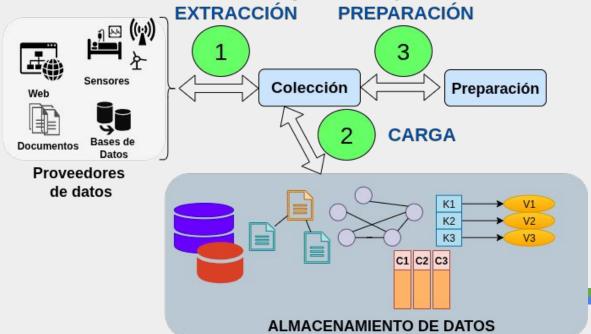


PROCESO DE ANÁLISIS DE DATOS Utilidad de BDs

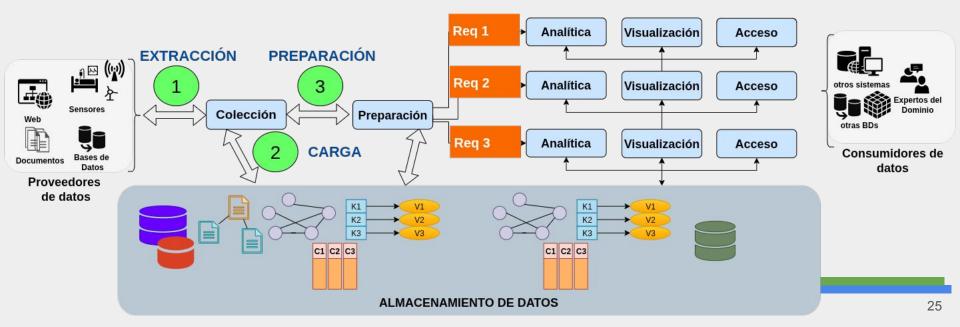


PROCESO DE ANÁLISIS DE DATOS Proceso ETL

Proceso ETL: extracción-transformación-carga



PROCESO DE ANÁLISIS DE DATOS Proceso ETL Completo


PROCESO DE ANÁLISIS DE DATOS Proceso ELT

Proceso ELT: extracción-carga-transformación

PROCESO DE ANÁLISIS DE DATOS Proceso ELT

Proceso ELT: extracción-carga-transformación

PROCESO DE ANÁLISIS DE DATOS

ETL	VS	ELT
RIGIDO Y DETALLADO	ESQUEMA	RAPIDO Y FLEXIBLE
ALTO	соѕто	BAJO
POCO/MEDIO VOLUMEN	DATOS	GRANDES VOLUMNEES
ALTA	SEGURIDAD	MENOS CONTROLADA
ESCALABILIDAD VERTICAL	ESCALABILIDAD	ESCALABILIDAD HORIZONTAL

Tipos de Sistemas

LA TOMA DE DECISIONES

SISTEMAS
TRANSACCIONALES

Tipos de Sistemas

- Podemos distinguir entre dos tipos fundamentales:
 - Sistemas Transaccionales: gestión de las transacciones diarias, automatización de los procesos empresariales.
 - Sistemas para la Toma de Decisiones: proporcionar una visión amplia, integral y profunda de los datos de una organización, de forma de tomar decisiones informadas.

Soporte según tipos de sistemas

OLTP (OnLine Transaction

Processing): Procesamiento en línea para el manejo transaccional

bancos, aerolineas, universidades, seguros, etc. OLAP (OnLine Analytical Processing): Procesamiento en línea para la toma de decisiones

lagos de datos

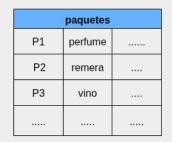
información agregada, gerencial, toma de desiciones

PROCESO DE ANÁLISIS DE DATOS Depósitos de Datos - ETL

- Los Depósitos de Datos o Data Warehouses son OTRO tipo de almacenamiento, con las características de:
 - Una base de datos diseñada para tareas analíticas
 - Con datos de múltiples aplicaciones
 - Uso de datos especialmente para la lectura
 - Interacción directa con el sistema sin asistencia IT
 - Contenido modificado periódicamente y estable

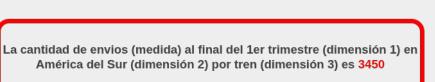
PROCESO DE ANÁLISIS DE DATOS Depósitos de Datos - ETL

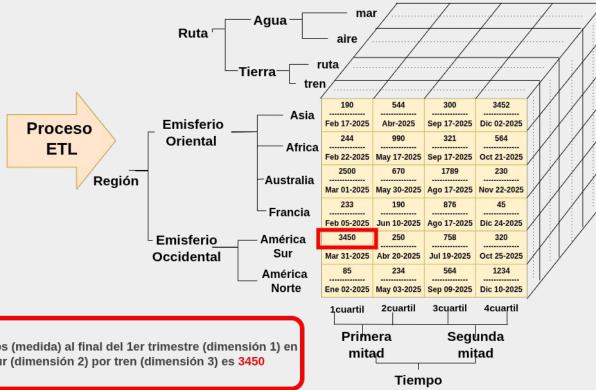
- Los Depósitos de Datos tienen las características de:
 - Contenido que incluya datos actuales e históricos
 - Habilidad de los usuarios para ejecutar consultas y obtener resultados en línea
 - Habilidad de los usuarios de realizar reportes



PROCESO DE ANÁLISIS DE DATOS Depósitos de Datos - ETL

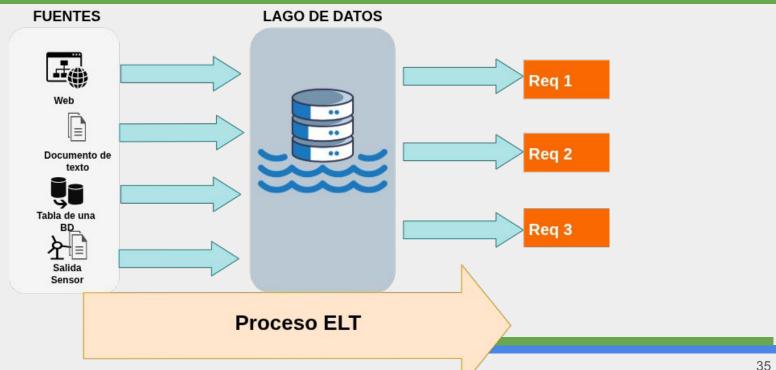
- Un **Depósito de Datos** es un entorno que:
 - Provee una vista integrada y total de la empresa
 - Hace que la información actual e histórica esté fácilmente disponible para la toma de decisiones estratégicas
 - Hace posibles transacciones de soporte a las decisiones sin afectar los sistemas operacionales
 - Es una fuente de información estratégica y consistente


Datos transaccionales


Datos agregados y combinados

envios					
P1	Jet747	12/12/2025	Buenos Aires	Buenos Aires	
P2	Tren4	13/12/2025	New York	New York	
Р3	Royal Caribean	13/12/2025	Paris	Paris	

ciudades				
Buenos Aires	ARG			
New York	USA			
Paris	Francia			



PROCESO DE ANÁLISIS DE DATOS Lago de Datos - ELT

Un lago de datos es un repositorio (para almacenamiento) que contiene grandes cantidades de datos de varias fuentes en un formato granular y sin procesar. Puede guardar datos estructurados, semiestructurados o no estructurados, lo que significa que los datos pueden conservarse en un formato más flexible para usarlos en un futuro. Al guardar datos, un lago de datos los asocia con identificadores y etiquetas de metadatos para poder extraerlos más rápidamente

PROCESO DE ANÁLISIS DE DATOS Lago de Datos - ELT

PROCESO DE ANÁLISIS DE DATOS Lago de Datos - ELT

- Un Lago de Datos es un repositorio de datos muy diferente:
 - Los datos se almacenan en su formato original, no se transforman hasta que las aplicaciones los llaman
 - Se evita la transformación costosa previa de datos.
 - Las operaciones de transformación solo se realizarán cuando los datos se lean desde el lago de datos.
 - El enfoque de los lagos de datos se denomina enfoque de "Esquema de lectura" (Schema on read), es decir la estructura (esquema) se define en la lectura

• Ventajas:

- Permiten que los usuarios tengan acceso inmediato a toda la información almacenada en el lago.
- Permite diferentes tipos de fuentes de información, no limitadas solo a datos relacionales o transaccionales.
- Acelera la entrega permitiendo que las unidades de negocio alimenten las aplicaciones rápidamente.

• Ventajas:

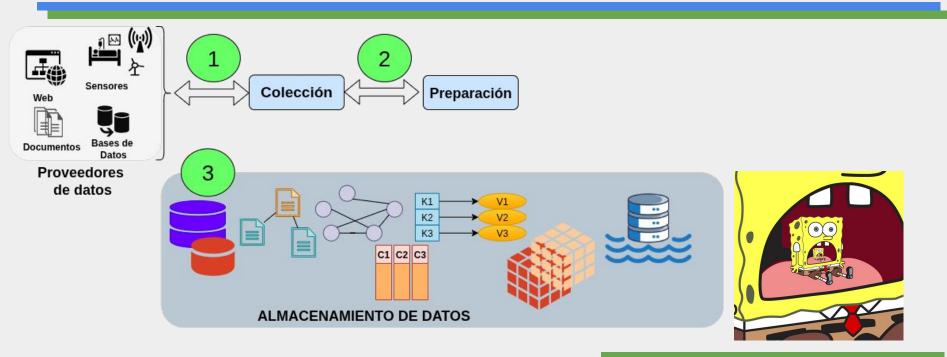
- Los datos se preparan "según sea necesario", lo que reduce los costos de preparación sobre el procesamiento inicial.
- Mayor flexibilidad al no necesitar todas las respuestas por adelantado.
- Posibilidad de almacenar datos en bruto que pueden refinarse en el tiempo para que su comprensión mejore.

Desventajas:

- O Diferentes interpretaciones de usuario o aplicación de los datos que pueden entrar en conflicto.
- Inexactitud en los metadatos haciendo difícil encontrar datos específicos.
- Se debe considerar tiempo extra para garantizar seguridad. Las fuentes de datos del lago pueden contener información confidencial que requerirá la implementación de medidas de seguridad apropiadas en la organización.

Desventajas:

- Los datos se pueden volver obsoletos debido a un indiscriminado acaparamiento.
- Los datos pueden estar corruptos debido a la falta de comprobaciones iniciales.
- Los datos obsoletos y corruptos pueden convertir un lago de datos en un "pantano de datos". La curación adecuada de los datos puede evitar que esto suceda, aunque esto significa un esfuerzo adicional.



PROCESO DE ANÁLISIS DE DATOS DW vs Lago de Datos

DW		📑 Lago de
DVV	VS	Datos
Estructurados, datos procesados	DATOS	Sin estructura, sin procesar
Esquema de escritura	PROCESAMIENTO	Esquema de lectura
Caro y confiable	ALMACENAMIENTO	Barato y dudoso
Configuración robusta y fija	FACILIDAD USO	Configuración ligera y flexible
Madura	SEGURIDAD	Madurando
Profesionales, empresarios, CEOs	USUARIOS	Científicos de datos familiarizados con el dominio

PROCESO DE ANÁLISIS DE DATOS Entonces? dónde almacenamos?

PROCESO DE ANÁLISIS DE DATOS Almacenamiento de Datos

- Entran a un bar...
- Una base de datos Clave-Valor,
- una Orientada a Documentos,
- una Columnar,
- **Ouna Relacional**,
- 🏠 un Data Warehouse,
- 🜊 y un Data Lake.
- El bartender pregunta:
- -¿Qué van a tomar?

Clave-Valor:

- -Lo de siempre, clave "cerveza", valor "IPA".
- Orientada a Documentos:
- —Te paso un JSON con mi orden completa, toppings incluidos.

Columnar:

- —Solo quiero la columna "alcohol", ignora el resto.
- —Primero pásame la tabla de cervezas, después la de precios, y hago un JOIN.
- Data Warehouse:
- —¿Tienes algo preagregado por tipo, día y marca?
- Data Lake:
- —Tráeme todo lo que tengas... ya veré qué hago con eso mañana.

Mientras tanto, un CSV borracho grita desde la esquina:

—¡Nadie me entiende si no me abren con Excel!

PROCESO DE ANÁLISIS DE DATOS BDs Orientadas a columnas

- Una BD orientada a columnas es un repositorio de gestión datos que almacena su contenido por columnas, en lugar de por filas.
- La columna es el elemento base y está compuesto por un nombre y un valor.

C1 C2 C3

NAMIEN TO DE PATOS

PROCESO DE ANÁLISIS DE DATOS BDs Orientadas a columnas

LIBRO				
ISBN	titulo	cantidadHojas	editorial	
9-983-33	Compiladores	936	McGraw-Hill	
5-889-22	Redes	1053	Oxford	
4-432-11	Bases de Datos	867	Addison-Wesley	

Aunque las columnas se almacenan por separado, los valores están ordenados y alineados por el número de fila original (índice posicional).

BD Orientadas a Columnas

<u>ISBN</u>
9-983-33
5-889-22
4-432-11

titulo
Compiladores
Redes
Bases de Datos

cantidadHojas	editorial
936	McGraw-Hill
1053	Oxford
867	Addison-Wesley

PROCESO DE ANÁLISIS DE DATOS BDs Orientadas a columnas

LIBRO					
<u>ISBN</u>	titulo	cantidadHojas	editorial		
9-983-33	Compiladores	936	McGraw-Hill		
5-889-22	Redes	1053	Oxford		
4-432-11	Bases de Datos	867	Addison-Wesley		

Por Filas

9-983-33	Compiladores	936	McGraw-Hill
5-889-22	Redes	1053	Oxford
4-432-11	Bases de Datos	867	Addison-Wesley

Por Columnas

9-983-33	5-889-22	4-432-11
Compiladores	Redes	Bases de Datos
936	1053	867
McGraw-Hill	Oxford	Addison-Wesley

PROCESO DE ANÁLISIS DE DATOS

Relacionales	vs	Columnas
Rápido para transacciones	QUERY	Rápido para agregaciones
Baja debido a heteorgenidad de filas	COMPRESIÓN	Alta debido a homogeneidad de columnas
Rápida	ACTUALIZACIONES	Lenta, modifica muchas columnas
Rapido	JOINS	Requiere índices
ACID	TRANSACCIONES	No hay transacciones

- Maria DB Column Store es un repositorio de datos orientado a columnas:
 - Es otro ENGINE, en el curso de BD vieron InnoDB
 - Ofrece una compresión del 90%, lo que reduce la E/S a disco y el tamaño de los datos en disco.
 - Los datos se pueden distribuir en múltiples instancias y consultar en paralelo para aumentar el rendimiento de las consultas y dar soporte a grandes conjuntos de datos.

Row-oriented vs. Column-oriented format

SELECT Fname FROM Table 1 WHERE State = 'NY'

ID	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	M
3	Daffy	Duck	NY	10013	(212) 227-1810	35	M
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	M
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F

ID	Fname
1	Bugs
2	Yosemite
3	Daffy
4	Elmer
5	Witch

Lname	
Bunny	
Sam	
Duck	L
Fudd	
Hazel	

State	Zip
Y	11217
CA	95389
YV	10013
WE	04578
MA	01970

p	Phone
17	(718) 938-3235
39	(209) 375-6572
13	(212) 227-1810
78	(207) 882-7323
70	(978) 744-0991

Row oriented Powe st

- Rows stored sequentially in a file
- Scans through every record row by row

Column oriented

Sex

M

Age

43

57

- Each column is stored in a separate file
- Scans the only relevant column

Single-Row Operations - Insert

Key	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	M
3	Daffy	Duck	NY	10013	(212) 227-1810	35	M
4	Elmer	Fudd	ME	04578 (207) 882-7323		43	M
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F
6	Marvin	Martian	CA	91602	(818) 761-9964	26	М

Key	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	M
3	Daffy	Duck	NY	10013	(212) 227-1810	35	M
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	M
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F
6	Marvin	Martian	CA	91602	(818) 761-9964	26	М

Row oriented:

new rows appended to the end.

Column oriented: new value added to each file.

Single-Row Operations - Update

	3-0						1
Key	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	М
3	Daffy	Duck	NY	10013	(212) 227-1810	35	M
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	М
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F

Key	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	M
3	Daffy	Duck	NY	10013	(212) 227-1810	35	M
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	M
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F

Row oriented:

Update 100% of rows means change 100% of blocks on disk.

Column oriented:

Just update the blocks needed to be updated

Single-Row Operations - Delete

Key	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	М
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	М
3	Daffy	Duck	NY	10013	(212) 227-1810	35	М
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	М
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F
6	Marvin	Martian	CA	91602	(818) 761-9964	26	М

Key	Fname	Lname	State	Zip	Phone	Age	Sex
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	M
3	Daffy	Duck	NY	10013	(212) 227-1810	35	М
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	M
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F
6	Marvin	Martian	CA	91602	(818) 761-9964	26	М

Row oriented:

Entire rows deleted

Column oriented:

Value deleted from each file

Changing the table structure

Key	Fname	Lname	State	Zip	Phone	Age	Sex	Active
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	М	Y
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	М	N
3	Daffy	Duck	NY	10013	(212) 227-1810	35	М	N
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	М	Y
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F	N

Key	Fname	Lname	State	Zip	Phone	Age	Sex	Active
1	Bugs	Bunny	NY	11217	(718) 938-3235	34	M	Y
2	Yosemite	Sam	CA	95389	(209) 375-6572	52	M	N
3	Daffy	Duck	NY	10013	(212) 227-1810	35	M	N
4	Elmer	Fudd	ME	04578	(207) 882-7323	43	M	Y
5	Witch	Hazel	MA	01970	(978) 744-0991	57	F	N

Row oriented:

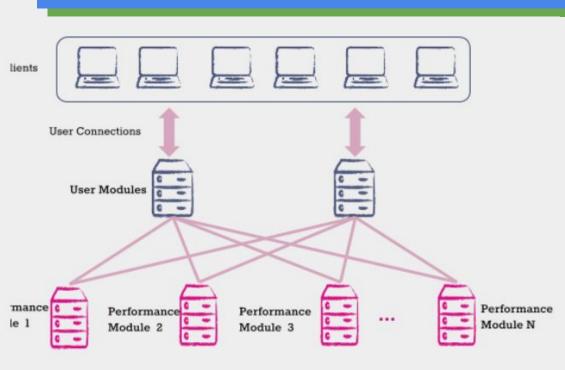
Requires rebuilding of the whole table

Column oriented:

Create new file for the new column


- Cuando y porque usar Maria DB Column Store:
 - Conjuntos de datos muy grandes
 - Muchas columnas
 - Muchos millones de filas
 - Agregaciones sobre gran cantidad de datos
 - Rápida inserción de gran cantidad de datos
 - Cuanto mayor sea el lote, mejor

- Cuando y porque usar Maria DB Column Store:
 - Escalabilidad Horizontal: Entorno distribuido
 - Solo se procesan y devuelven las columnas requeridas, lo que optimiza la ejecución de la consulta
 - Son (casi) ACID ya que no soporta un modelo de transacciones tradicional (no permite múltiples operaciones en una transacción)

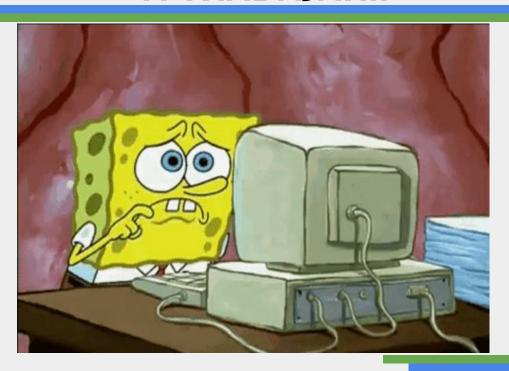

- Características de Maria DB Column Store:
 - O Usa SQL, pero hay que indicarle ENGINE=ColumnStore; al crear tablas
 - No soporta claves primarias, ni claves foráneas.
 - Las inserciones se pueden hacer como un INSERT INTO tradicional, pero se recomienda un volcado masivo con LOAD DATA INFILE
 - Los joins entre tablas diferentes se dividen en la forma en la que se efectúan: si se hacen en disco o en memoria. Dependiendo si se necesita disco para datos intermedios

- Características de Maria DB Column Store:
 - Como las operaciones DML (INSERTAR, ACTUALIZAR y ELIMINAR) permiten realizar cambios a nivel de fila, son más lentas en ColumnStore que en InnoDB.
 - ColumnStore está optimizado para modificaciones masivas, por lo que estas operaciones son más lentas.
 - O Documentación: https://mariadb.com/docs/columnstore/reference

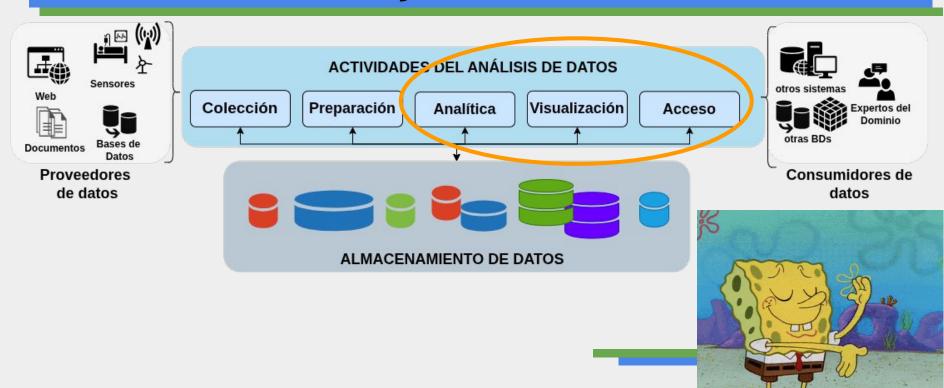
- Características de Maria DB Column Store:
 - No hay diferencia en la visualización de las tablas ya sean InnoDB o ColumnStore. Se ven todas igual.
 - Entonces, cómo hago para saber qué motor está usando?

- Características de Maria DB Column Store:
 - Entonces la diferencia va a estar sobre todo en las operaciones que vamos a realizar dependiendo el motor utilizado, ya que debemos conocer qué operaciones son mejores para qué motor.

*Cuando un cliente hace una consulta, el MODULO DE USUARIO (UM) la interpreta y divide el trabajo.


*Luego, los MÓDULOS DE PERFORMANCE (PMs) ejecutan los fragmentos de la consulta en paralelo sobre los datos que tienen.

*Finalmente, UM recolecta los resultados y los devuelve al cliente


PROCESO DE ANÁLISIS DE DATOS Maria DB: InnoDB vs ColumnStore

- Qué diferencias podemos encontrar?
 - vemos el resumen <u>aca</u>

PROCESO DE ANÁLISIS DE DATOS A TRABAJAR!!

PROCESO DE ANÁLISIS DE DATOS y ahora?

